Search results for "De Rham cohomology"
showing 10 items of 11 documents
Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems
2014
We determine the Hodge numbers of the cohomology group \(H_{L^{2}}^{1}(S, \mathbb{V}) = H^{1}(\bar{S},j_{{\ast}}\mathbb{V})\) using Higgs cohomology, where the local system \(\mathbb{V}\) is induced by a family of Calabi-Yau threefolds over a smooth, quasi-projective curve S. This generalizes previous work to the case of quasi-unipotent, but not necessarily unipotent, local monodromies at infinity. We give applications to Rohde’s families of Calabi-Yau 3-folds.
Cohomologie relative des applications polynomiales
2001
Let F be a polynomial dominating mapping from Cn to Cq with n>q. We study the de Rham cohomology of the fibres of F, and its relative cohomology groups. Let us fix a strictly positive weighted homogeneous degree on C[x1,…,xn]. With the leading terms of the coordinate functions of F, we construct a fibre of F that is said to be “at infinity”. We introduce the cohomology groups of F at infinity. These groups, denoted by Hk(F−1(∞)), enable us to study all the other cohomology groups of F. For instance, if the fibre at infinity has an isolated singularity at the origin, we prove that any quasi-homogeneous basis of Hn−q(F−1(∞)) provides a basis of all groups Hn−q(F−1(y)), as well as a basis of t…
Schubert calculus and singularity theory
2010
Abstract Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces, it has to be redesigned when applied to other generalized cohomology theories such as the equivariant, the quantum cohomology, K -theory, and cobordism. All this cohomology theories are different deformations of the ordinary cohomology. In this note, we show that there is, in some sense, the universal deformation of Schubert calculus which produces the above mentioned by specialization of the appropriate parameters. We build on the work of Lerche Vafa and Warner. The main conjecture these auth…
The cohomology of a variation of polarized Hodge structures over a quasi-compact Kähler manifold
2007
In this article, we consider the cohomologies with coefficients in a variation of polarized Hodge structures on a quasi-compact Kaehler manifold. We show that the L 2 L^2 -Dolbeault cohomology can be identified with the L 2 L^2 cohomology; we also give several direct applications of the result above.
Algebraic de Rham Cohomology
2017
Let k be a field of characteristic zero. We are going to define relative algebraic de Rham cohomology for general varieties over k, not necessarily smooth.
Equivariant cohomology, Fock space and loop groups
2006
Equivariant de Rham cohomology is extended to the infinite-dimensional setting of a loop subgroup acting on a loop group, using Hida supersymmetric Fock space for the Weil algebra and Malliavin test forms on the loop group. The Mathai–Quillen isomorphism (in the BRST formalism of Kalkman) is defined so that the equivalence of various models of the equivariant de Rham cohomology can be established.
The Period Isomorphism
2017
The aim of this section is to define well-behaved isomorphisms between singular and de Rham cohomology of algebraic varieties.
Holomorphic de Rham Cohomology
2017
We are going to define a natural comparison isomorphism between algebraic de Rham cohomology and singular cohomology of varieties over the complex numbers with coefficients in \(\mathbb {C}\). The link is provided by holomorphic de Rham cohomology, which we study in this chapter.
Closed star products and cyclic cohomology
1992
We define the notion of a closed star product. A (generalized) star product (deformation of the associative product of functions on a symplectic manifold W) is closed iff integration over W is a trace on the deformed algebra. We show that for these products the cyclic cohomology replaces the Hochschild cohomology in usual star products. We then define the character of a closed star product as the cohomology class (in the cyclic bicomplex) of a well-defined cocycle, and show that, in the case of pseudodifferential operators (standard ordering on the cotangent bundle to a compact Riemannian manifold), the character is defined and given by the Todd class, while in general it fails to satisfy t…
Hochschild Cohomology Theories in White Noise Analysis
2008
We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same.